Ядерная революцияАвтор: Галактион Андреев
Предложенный около шестидесяти лет тому назад метод ЯМР и основанные на нем приемы томографии сегодня нашли множество научных и практических применений. Это одно из мощнейших средств медицинской диагностики и основной инструмент в дистанционных исследованиях мозга, не говоря уж об изучении структуры молекул и создании прототипов квантовых компьютеров. Метод использует то обстоятельство, что ядра некоторых элементов магнитны, то есть обладают спином. Их можно представить себе как маленькие вращающиеся волчки. Если атомы поместить в сильное постоянное магнитное поле, то спины их ядер будут стараться повернуться вдоль поля, прецессируя, то есть крутясь и покачиваясь, как детская юла. Это магнитное поле, как правило, получают с помощью большого сверхпроводящего магнита, который составляет львиную долю стоимости установки. Движение ядер можно возмутить радиоимпульсом (толкнуть юлу), а затем измерять излучаемые ядрами в процессе возврата в прежнее состояние радиоволны. Анализ радиосигналов дает важную информацию о молекулах, окружающих такое ядро, а также о динамике их поведения. Эти радиосигналы обычно регистрируют с помощью антенны в виде катушки, но иногда используют чрезвычайно чувствительные сверхпроводящие квантовые магнитометры - СКВИДы, которым уже не нужен сильный магнит. С помощью ядерного магнитного резонанса удается получать трехмерные изображения, но пространственное разрешение метода существенно ограничено: даже точности в одну десятую миллиметра весьма непросто достичь. В новом методе, предложенном учеными Принстонского университета, для измерения ориентации спинов ядер вместо радиоволн и катушки используют линейно поляризованный видимый свет. Ориентированные спины ядер вращают плоскость поляризации света, и этот эффект, носящий имя Фарадея, удается измерить. Это было продемонстрировано на образцах жидкого ксенона и воды.
Другая методика, разработанная командой из Калифорнийского университета и Национальной лаборатории имени Лоуренса в Беркли, тоже использует вращение поляризации света лазера. Однако здесь лазерный луч проходит не через образец, а сквозь пару сантиметровых кубиков, заполненных парами рубидия при температуре 43 градуса Цельсия. Спины ядер рубидия в кубиках чувствуют слабые радиочастотные изменения магнитного поля образца. Эти кубики вместе с лазером, хитрой оптической системой и анализирующим сигналы компьютером образуют чрезвычайно восприимчивый магнитометр, который сопоставим по чувствительности со СКВИДом. Но в отличие от последнего, лазерный магнитометр работает при комнатной температуре и не требует охлаждения до температуры жидкого гелия. Больше не нужно и сильное постоянное магнитное поле (а значит и создающий его дорогой сверхпроводящий магнит), можно обойтись полем обычных постоянных магнитов. Это позволит, считают авторы, в перспективе создать недорогие переносные сканеры на ядерном магнитном резонансе и соответственно вывести основанные на нем медицинские и исследовательские приемы на совершенно новый уровень доступности.
|