Происки бессмертия
 
11.11.2003
Владимир Гуриев
Лариса Зарицкая [cnil@giduv.baikal.ru]


 
стр. 1
стр. 2 >>

Три года назад кембриджский геронтолог Обри де Грей (Aubrey de Grey) в интервью газете Sunday Times заявил: «Сегодня мы понимаем процесс старения настолько хорошо, что можем не только допустить возможность вмешательства, способного предотвратить старение, но и описать его. Эта задача уже перешла в ранг инженерных проектов, науке здесь делать нечего. Единственное, чего мы не знаем, — как много времени займет этот инженерный проект».

Смелое заявление. Однако несомненно, что сегодня биологи действительно много знают о процессе старения. По крайней мере, гораздо больше, чем сто или даже двадцать лет назад.

Прежде чем говорить о старении, следует выяснить, что понимается под этим термином. Биологическое старение начинается значительно раньше социального. И «мужчина в самом расцвете сил», и все прочие, чей физический рост прекратился, вполне могут считаться стариками, потому что их организмы деградируют. В дикой природе таких проблем нет — животные редко доживают до старости. Собственно, и перед человеком проблема старения встала относительно недавно — еще несколько столетий назад средняя продолжительность жизни составляла около тридцати лет, а несколько тысячелетий назад мужчина за тридцать считался пожилым. И сегодня множество людей умирает не от старости самой по себе, а от заболеваний, с которыми не может справиться слабый, изношенный организм. Тем не менее, не вызывает сомнений, что человеческое тело — даже помести мы его в идеальные условия — не бессмертно.

Предел Хейфлика

Бог велел делиться.
Неизвестная амеба

Одна из причин старения — закон делимости клеток, открытый американским биологом Леонардом Хейфликом (Leonard Hayflick) в 1961 году. Суть его в том, что клетки человеческого организма не могут делиться бесконечно. Максимально возможное количество делений в среднем составляет 50±10 (так называемый предел или лимит Хейфлика).

Вызвано это тем, что при делении клетки репликация ДНК происходит «с потерями» — молекула копируется не до конца. До определенного момента в этом ничего страшного нет — кончики хромосом защищены теломерами, которые и теряются при некачественном копировании. Но рано или поздно наступает момент, когда полученная на выходе ДНК оказывается неработоспособной.

Впрочем, в нашем организме есть клетки, которые могут делиться бесконечно, например кроветворные или раковые. В этих случаях механизм ограничения количества делений не срабатывает благодаря теломеразе, которая «чинит» ДНК, достраивая теломеры.

Косвенным доказательством связи длины теломеров со старением организмов служит тот факт, что у больных синдромом Хатчинсона-Гилфорда (детская прогерия) число Хейфлика значительно снижено. Возможно, поэтому дети, пораженные прогерией, очень похожи на стариков и зачастую умирают от «возрастных» болезней в детском возрасте. На самом деле, скорость старения у них такая же, как и у обычных людей, но слишком мал потенциал соматических клеток. Схожая картина наблюдается у больных синдромов Вернера (взрослая прогерия). В этом случае больные нормально доживают до 17–18 лет и начинают стремительно стареть, перейдя этот рубеж. Теломеры у таких больных нормальной длины, но их ДНК почему-то более чувствительна к их разрушению, нежели ДНК здорового человека.

Не нужно быть семи пядей во лбу, чтобы найти выход из этой ситуации. Науке известно, что раковые клетки практически бессмертны благодаря теломеразе, так почему не изменить ДНК таким образом, чтобы все клетки без исключения могли восстанавливать теломеры? К сожалению, подобное перепроектирование клеток теоретически может привести к перерождению их в раковые. Так, увеличение числа делений неизбежно ведет к увеличению количества мутаций клетки, а значит — к повышению вероятности ее перерождения в раковую. И предел Хейфлика вовсе не произвольно взятое природой число, а максимально допустимое количество делений, при котором риск превращения обычной клетки в раковую минимален. Так, например, Е.Е.Егоров пишет1, что, для возникновения раковой опухоли в среднем требуется от 60 до 140 клеточных генераций (ср. со значением предела Хейфлика).

Это не фатальная проблема, и здесь просто-напросто нужны дополнительные исследования. Хуже другое — повышение предела Хейфлика само по себе не поможет значительно продлить жизнь человека. Многочисленные эксперименты доказали, что есть множество других причин старения клеток.

Таким образом, внедрить теломеразу в соматические клетки для достижения бессмертия недостаточно. С другой стороны, нельзя недооценивать побочный эффект открытия теломеразы. Пусть мы не знаем, как сделать обычные клетки бессмертными, зато понимаем (в какой-то мере), почему бессмертны раковые клетки, что дает возможность создать лекарство от рака.

Свободные радикалы

Дышите глубже.
Совет сомнительной полезности

Парадоксально, но факт: главный враг клеток — это кислород. Точнее, активные формы молекулы кислорода — свободные радикалы, разрушающие клетку изнутри. Биолог Брюс Эймс из Беркли полагает, что свободные радикалы атакуют молекулу ДНК до 10 тысяч раз в день (и это происходит в каждой клетке; представьте, какие крупномасштабные боевые действия ведутся в наших организмах). Одним из главных источников радикалов  является митохондрия — основной поставщик энергии для клетки. Активные формы молекулы кислорода поражают саму ДНК и мешают работать механизмам ее восстановления. Иногда свободные радикалы вообще «перестраивают» клетку под себя, заставив митохондрию мутировать так, чтобы она производила как можно больше свободных радикалов (в ущерб производству энергии).

Любой человек, мало-мальски сведущий в математике, знает, что ошибки имеют обыкновение накапливаться. Так и здесь: не выявленная и не исправленная ошибка остается в клетке навсегда, передаваясь по наследству всем ее потомкам. И даже при том, что ошибки случаются очень редко (примерно один раз на миллиард репликаций нуклеотидных последовательностей), вред, который наносится клетке, со временем становится заметен.

Процесс окисления, протекающий в митохондриях, вреден и без свободных радикалов — образующийся при этом биологический мусор мешает нормальному функционированию клетки. Еще одна опасность свободных радикалов является продолжением их же достоинств. В норме химически активные молекулы кислорода защищают организм от пришлых агентов, уничтожая бактерии и вирусы. Этот процесс регулируется антиокислителями (или антиоксидантами), которые держат свободные радикалы в узде. Но при расшатанной иммунной системе при недостатке естественных антиоксидантов в организме свободные радикалы поворачиваются против организма, что приводит к еще большей встряске иммунной системы и появлению таких заболеваний, как диабет, артрит, рак и болезнь Альцгеймера.

Образно говоря, свободные радикалы — это улыбчивые братки, «крышующие» клетку. Клетке от такой заботы не очень хорошо, но и польза от свободных радикалов есть. Однако если они войдут во вкус, то плохо будет не только клетке, которая неблагоразумно воспользовалась их услугами, но и всем ее соседям. Попишут всех, в натуре.

Теория свободных радикалов не нова. О том, что чрезмерное окисление смертельно опасно для организма, известно еще с 1930-х годов. Тогда профессор Клайв Маккей (Clive McCay), экспериментируя с популяцией крыс, выяснил, что урезание привычного рациона на треть приводит к увеличению продолжительности жизни крыс почти в полтора раза. Самой теории свободных радикалов еще не было, но причины полезности голодания были уже очевидны. Организм, посаженный на голодный паек, подстраивает обмен веществ под новую норму. При этом эффективность метаболизма возрастает, свободных радикалов производится меньше — следовательно, меньше и наносимый организму ущерб.

На сегодняшний день основными линиями развития геронтологии являются исследования в области свободных радикалов и работа над увеличением предела Хейфлика.

Мышиный удел

Не понос, так золотуха.
Лабораторная мышь

Опасение, что активная теломераза в обычной клетке может принести больше вреда, чем пользы, небезосновательно. Несколько лет назад ученые поставили эксперимент на мышах. У одной группы особей ген р53 был удален, а у другой — заменен мутировавшей версией. Нормальный р53 отвечает за самоубийство поврежденных клеток. Как правило, в раковых клетках он подавлен, и даже очевидность повреждений не мешает раковой клетке делиться. Теоретически усиленная версия р53 должна была повысить сопротивляемость раковым заболеваниям, а в идеале — вовсе исключить их. И следовательно — увеличить среднюю продолжительность жизни.

На практике все произошло с точностью до наоборот. Мыши, лишенные гена р53, жили от 40 до 44 недель. Мыши с мутировавшей версией р53 в среднем протянули 96 недель. Тогда как обычные грызуны в среднем живут 118 недель, а порой доживают и до 160!

И хотя мыши-мутанты не болели раком (и в этом смысле эксперимент можно считать успешным), они гораздо быстрее старели и в конце концов либо умирали от других заболеваний, либо просто засыпали и не просыпались. Справедливости ради, нужно сказать, что у мутантов были не все признаки наступающей старости, но и имеющихся оказалось вполне достаточно, чтобы не сомневаться в диагнозе. Ген р53 перестарался.

Этот пример достаточно условен, поскольку разница между человеческим организмом и организмом лабораторной мышки весьма значительна. Однако печальная история мышей, которые жили быстро и умерли молодыми, как завещал Джим Дин, показывает, что регулирование клеточных процессов очень сложная и опасная задача. И в результате невинной, казалось бы, операции можно попасть в такое полымя, что огонь, из которого выбрались исследователи, покажется скромным огоньком зажигалки.


1 (назад)«Теломераза, старение, рак»//Молекулярная биология, 1977, т. 31, № 1.


 
стр. 1
стр. 2 >>

<<Сны о чем-то большем
Все материалы номера
Не надышишься >>