Дважды два
 
21.02.2003
Павел Данилов


 
стр 1.
стр. 1 >>

 В последние годы индустрия DRAM выглядит одной из наиболее скандальных отраслей hi-tech, по напряженности конкуренции сравнявшись с битвами процессорных гигантов. Почти все компании-производители чипов памяти балансируют на грани рентабельности, а некоторые — сводят концы с концами лишь благодаря миллиардным кредитам (которые рано или поздно придется отдавать).

Прогноз на 2003 год вновь показывает значительное превосходство предложения над спросом (6%), что не может не провоцировать ценовые войны и вытекающие из них проблемы для производителей. В этой ситуации в выигрыше оказываются те, кто предлагает на рынке наибольший спектр решений, получая более высокий доход от продажи высокопроизводительных типов памяти, не обязательно имеющих высокую себестоимость. Известно, что производство чипов SDR и DDR SDRAM обходится компаниям примерно в одинаковую сумму, но рыночная конъюнктура такова, что цены на DDR почти вдвое выше. В таких условиях многие производители чипов негативно относятся к технологиям пусть даже весьма быстрой и технически продвинутой памяти, но дорогой в производстве, особенно когда за каждый изготовленный чип приходится платить лицензионные отчисления (пример — DRDRAM). Между тем разрыв между производительностью процессоров и RAM продолжает увеличиваться. Сравнение мультимедиа-компьютера класса hi-end на базе Pentium MMX 233 с памятью PC66 SDRAM (1997 год) и современного монстра с Pentium 4 3,06 ГГц и PC2700 DDR показывает, что если частота процессоров выросла в тринадцать раз, то время доступа к оперативной  памяти уменьшилось только в 2,5 раза, а скорость передачи данных возросла лишь впятеро. В целом ситуация с течением времени ухудшается, что ясно видно на примере эволюции процессорных тестов: если ранние тестовые программы использовали очень малые объемы памяти и давали хорошую оценку быстродействия компьютеров на реальных задачах, то современные тесты (например, SPEC CPU2000), претендующие на объективность, все больше и больше зависят не столько от скорости самого процессора, сколько от мощи его подсистемы памяти. Большинство компьютеров не могут рассчитывать на десятки мегабайт высокоскоростной и дорогостоящей SRAM в качестве кэша энного уровня или на контроллеры, объединяющие пропускную способность множества каналов памяти, как у их «двоюродных братьев» из мира hi-end-серверов. Единственный выход — создание быстродействующей, компактной и недорогой оперативной памяти. Таким образом, производители процессоров кровно заинтересованы в появлении новых, все более быстрых типов RAM и в ряде случаев оказывают значительное влияние на продвижение более перспективных стандартов. В действительности любой современный стандарт DRAM представляет собой компромисс между потребностью в высокоскоростной оперативной памяти и возможностями/желаниями ее производителей, во многом обусловленными рыночной конъюнктурой. Сейчас Intel и многие ведущие компании-производители микросхем памяти (Samsung, Micron, Elpida и другие) пришли к согласию относительно выбора наследницы DDR SDRAM — с их точки зрения, в 2004–05 годах DDRII должна стать доминирующим типом памяти для настольных компьютеров, серверов и рабочих станций.
Попробуем разобраться, почему же эта технология так важна и что принесет нам новая память DDRII SDRAM, не забывая при этом, что чаще всего побеждают не самые быстрые и совершенные технологии, а наиболее целесообразные экономически.
На первый взгляд, DDRII выглядит просто как улучшенная DDR SDRAM — с увеличенными частотами, уменьшенным энергопотреблением и набором «новых функций» (ключевые характеристики DDRII и DDR SDRAM приведены в таблице на следующем развороте). Но в действительности под привычными очертаниями скрывается совершенно иная архитектура.

Предвыборка 4 бит
(4-bit Prefetch)

Идея такова: при неизменной внутренней частоте ядра памяти частота буферов ввода-вывода удваивается; при этом за каждый такт передается два блока данных (как в обычной DDR). Получается, что по сравнению с частотой синхронизации ядра ввод-вывод данных осуществляется на четырехкратной скорости. Гениальное изобретение, позволяющее одним махом решить все проблемы микроэлектронной промышленности? Не совсем. Хотя благодаря этому ухищрению скорость потокового ввода-вывода действительно учетверяется, латентность преимущественно определяется собственной частотой ядра, а она для 400-МГц DDRII, как и для PC1600 DDR SDRAM и «бабушки» PC100 SDRAM, по-прежнему равна 100 МГц. Становятся понятными необычно большие «тайминги» (тройка CL, tRCD, tRP) DDRII: как вам 4-4-4 схема работы DDRII 400?! Все задержки приводятся для частоты буферов, то есть той частоты, с которой память общается с контроллером (чипсетом), а она в нашем случае в два раза больше реальной частоты ядра. Поэтому 4-4-4 для DDRII 400 соответствует 2-2-2 для DDR PC1600 или SDR PC100, что составляет 20 нс. Разумеется, увеличивать частоту буферов, занимающих несколько процентов общей площади кристалла, проще, чем поднимать скорость всей памяти. «Проще», как обычно, значит «дешевле» — и совсем не обязательно для нас с вами. Фактически производители чипов памяти в очередной раз получили прекрасную возможность продать PC100 в новой упаковке по цене «DDRII 400». Немного утешает, что энергопотребление модулей будет меньше (об этом ниже) и в массовое производство почти наверняка пойдет более быстрая память — уже DDRII 533 по сумме характеристик сегодня выглядит весьма привлекательно. На настоящий момент доступны 512-мегабитные чипы DDRII 400 и DDRII 533 4-4-4 от Samsung и Elpida; пиковая пропускная способность (недостижимая по ряду фундаментальных причин) модулей, собранных из них, составит примерно 3200 и 4300 Мбайт/с (как у 32-разрядных RIMM и QBM SDRAM). Заметим, что латентность 3-3-3 DDR400 SDRAM (PC3200) примерно соответствует латентности 4-4-4 DDRII 533. DDRII 400 — явный аутсайдер.
Итог: путем удвоения частоты выходных буферов и передачи двух слов за такт DDRII учетверяет пропускную способность SDRAM. Сама память при этом в нынешних чипах работает на частоте 100 или 133 МГц, что означает латентность, примерно соответствующую PC1600 и PC2100 DDR SDRAM.

Отложенный CAS
и аддитивная
латентность (Posted CAS and Additive Latency)

Разработчики DDRII постарались учесть некоторые недостатки обычного протокола работы SDR/DDR-памяти, управляемой внешним контроллером (чипсетом). Обычно синхронная память работает следующим образом: после сигнала активации банка (Act) чипсет пропускает несколько тактов (задержка RAS-to-CAS delay, tRCD), после чего следует сигнал чтения (Read), и перед считыванием первого слова чипсет ожидает время задержки CAS latency (tCL), а затем считывает из буферов DRAM строку данных. Значения задержек считываются чипсетом из SPD-модуля DIMM либо устанавливаются вручную в BIOS материнской платы. 21Последовательные запросы активации банков отделены задержкой Row-to-Row delay. При трех последовательных запросах возникает конфликт на управляющих линиях, когда одновременно должны быть посланы сигналы чтения для первого пакета данных и активации банка для третьего. В этом случае чипсет продолжает работу по считыванию первого пакета, а активация банка для третьего пакета происходит с задержкой в один такт. В потоке считываемых данных образуются «пузыри», и шина используется менее эффективно.
В схеме с отложенным CAS сигналы Act и Read следуют один за другим без задержки; конечно, DRAM физически не может мгновенно активировать банк. В этом случае специальная схема внутри чипа памяти (а не чипсет, как в обычном режиме) отслеживает сигнал Act, определяет величину задержки, называемой аддитивной латентностью, а затем та же встроенная схема посылает сигнал чтения, и после задержки CAS чипсет может считывать данные. Оба параметра являются программируемыми: скажем, для чипов Samsung K4T5104(08/16)3QM возможные значения задержки CAS — 3, 4, 5, а аддитивная латентность (AL) может быть 0, 1, 2, 3, 4. Такой механизм, реализованный в DDRII, позволяет ей более эффективно использовать шину. К сожалению, это происходит только при последовательном обращении к разным банкам памяти и в реальной работе памяти встречается реже, чем хотелось бы. К тому же выигрыш в один такт при пересылке трех пакетов данных не выглядит фантастическим достижением. Разработчикам будущих чипсетов (и процессоров — намек на AMD) можно посоветовать использовать режимы чередования банков памяти для более эффективного использования DDRII. Недостатком новой памяти является повышение латентности при записи: в отличие от DDR SDRAM, где она обычно составляет один такт, для DDRII латентность записи на единицу меньше латентности чтения (иногда это свойство называют Variable Write Latency, переменная латентность записи), что в лучшем случае составит три такта. Впрочем, это не оказывает большого влияния на работу процессора, так как запись осуществляется в буферы чипсета.
Итог: DDRII позволяет более плотно загружать шину между памятью и чипсетом, в ряде случаев дополнительно увеличивая пропускную способность по сравнению с DDR SDRAM. К сожалению, латентность DDRII при записи увеличилась.

Встроенная
терминация
(On-Die Termination)
Внешняя калибровка формирователя (Off-Chip Driver Calibration) Рассеиваемая
мощность

Удвоенная частота синхронизации DDRII приводит к тому, что многие решения, успешно применявшиеся для поддержания качества сигналов на частотах, характерных для DDR, теперь недостаточно эффективны. Мы кратко рассмотрим важнейшие усовершенствования DDRII, позволяющие ей работать на удвоенной частоте.
Любой сигнал, распространяющийся по реальной шине, отражается от различных неоднородностей, в частности от концов шины; при этом отраженные сигналы взаимодействуют с основным и друг с другом, создавая некоторую интерференционную картину. Практически это означает появление шума, ухудшающего качество сигнала, что, в конце концов, может сделать невозможной передачу данных по шине. Для борьбы с отражениями применяется терминация. В простейшем случае поступают так: на концах шины устанавливают резисторы и заземляют их либо подключают к источнику напряжения. При определенном значении сопротивления (равном характеристическому импедансу шины) резистор поглощает (терминирует, вот откуда зловещий термин) сигнал, и отражения не происходит. Для шины памяти SDR и DDR SDRAM терминаторы устанавливаются на материнской плате (резисторы можно увидеть между слотами DIMM); на схеме видно, что это может приводить к отражениям от неактивного в данный момент чипа памяти:
DDRII терминирует сигналы шины данных, строба данных и маски записи внутри кристалла микросхемы. Кроме снижения шумов, такой подход, по заявлению создателей DDRII, удешевляет разработку и снижает стоимость материнских плат. Далее, для уменьшения влияния задержки распространения сигнала по трассе в DDRII, в отличие от DDR, применяется двунаправленное дифференциальное стробирование сигналов данных. При пониженном напряжении и росте частоты на линиях шины усиливается перекос (skew) восходящего и нисходящего сигналов, а также происходят всплески напряжения, превышающие установленные пределы. Для борьбы с этими неприятными эффектами используется внешняя калибровка (подстройка) импеданса формирователя — OCD. Механизм этот программируемый, контроллер может начать повторную калибровку полного сопротивления в любой момент. Калибровка с помощью внешнего прецизионного резистора вдобавок позволяет нивелировать различия чипов от разных производителей и в конечном счете снижает перекосы сигналов.
Чипы DDRII будут упаковываться в новые корпуса типа BGA — как DRDRAM и быстрая DDR-память, устанавливаемая на графических платах. BGA-корпусировка имеет ряд заметных преимуществ — уменьшение электромагнитной интерференции, индуктивности, большая помехозащищенность и т. д. Разумеется, это опять-таки необходимо для стабильной работы на высоких частотах.
Для уменьшения рассеиваемой мощности рабочее напряжение DDRII снижено с 2,5 В до 1,8 В по сравнению с DDR (как известно, рост тепловыделения пропорционален квадрату напряжения), что позволяет на время забыть об охлаждении чипов памяти. Уже сейчас многие высококлассные модули DDR SDRAM оснащаются радиаторами, а в будущем, с ростом степени интеграции микросхем эта проблема только усугубится. Во всяком случае, «невысокая» частота ядра DDRII вкупе с пониженным напряжением имеет свой плюс — модули памяти еще несколько лет смогут обходиться без вентиляторов…
Итог: Из-за повышенной вдвое частоты интерфейса ввода-вывода в DDRII применяются некоторые специальные подходы (внутрикристальная терминация, внешняя калибровка сопротивления формирователя, корпус BGA) для уменьшения шумов и улучшения качества сигналов. Все это делает работу новой памяти более устойчивой на высоких частотах.

 


 
стр 1.
стр. 1 >>


 Все работы хороши? [ "13-я КОМНАТА" ]
 Новости [ "НОВОСТИ" ]
 Дорога домой [ "НОВОСТИ" ]
 Микрофишки [ "НОВОСТИ" ]
 Слесаря вызывали? [ "НОВОСТИ" ]
 Умная пыль на сапогах [ "НОВОСТИ" ]
 Лишь бы работало [ "НОВОСТИ" ]
 Производство варева [ "ТЕМА НОМЕРА" ]
 «ERP»для программистских проектов [ "ТЕМА НОМЕРА" ]
 Управление качеством в процессах разработки программного обеспечения [ "ТЕМА НОМЕРА" ]
 От хвоста до головы Практика разработки средних и крупных программных проектов [ "ТЕМА НОМЕРА" ]
 Символическая новизна [ "SOFTТЕРРА LITE" ]
 Зимний прорыв [ "SOFTТЕРРА LITE" ]
 События [ "SOFTТЕРРА LITE" ]
 Синергия [ "КОМПЬЮFЕРРА LITE" ]
 Перст указующий [ "КОМПЬЮFЕРРА LITE" ]
 Дважды два [ "КОМПЬЮFЕРРА LITE" ]
 Баскетбол для зомби [ "ОПЫТЫ" ]
 Размер имеет значение [ "АНАЛИЗЫ" ]
 Миф в окошке [ "АНАЛИЗЫ" ]
 Где прячется квантовое сознание? [ "КАФЕДРА ВАННАХА" ]
 Масяня и Директора [ "КАРАУЛ" ]
 Что путного сможет сделать тысяча собранных под одной крышей программистов? [ "ВОПРОС НЕДЕЛИ" ]
 Женщины тоже способны мыслить [ "ПИСЬМОНОСЕЦ" ]


Все материалы номера