Естественный путь к искусственному интеллекту
 
23.10.2002
Леонид Левкович-Маслюк


 
Страница 1
Страница 2 >>

Тема этого номера - компьютерное моделирование как инструмент исследования когнитивных, интеллектуальных процессов в мозге человека или животного. В обстоятельной беседе со мной Константин Анохин (в свои сорок четыре - профессор, член-корреспондент Российской Академии медицинских наук, заведующий отделом системогенеза Института нормальной физиологии им. П. К. Анохина и руководитель Российско-британской лаборатории нейробиологии памяти) рассказал о месте такого моделирования в общей стратегии исследований, об основных современных концепциях организации мозговых структур, управляющих поведением. От этой темы неотделима тема эволюционного развития этих структур. В последние десять-пятнадцать лет стремительно нарастает объем исследований и практических разработок в области компьютерного моделирования, использующих эволюционную парадигму при решении задач управления, оптимизации, конструирования роботов и коллективов роботов для решения сложных, плохо формализуемых задач - в частности, связанных с автономной работой в экстремальных условиях. О состоянии дел в этой области рассказывает краткий обзор молодого математика, специалиста по эволюционным вычислениям Михаила Бурцева (стр. 30). С моей, может быть, излишне скептической точки зрения, реальный прогресс в моделировании высшей (да и низшей) нервной деятельности и ускоренной виртуальной «эволюции» по примитивным, в сущности, правилам, не соответствует ни ожиданиям, ни, главное, колоссальному росту доступных вычислительных ресурсов. Мысли об этом сильно испортили мне настроение перед разговором с Константином Анохиным.


 Константин Владимирович, уже столько лет люди пытаются моделировать интеллектуальные функции, но успехи довольно скромны. Не кажется ли вам, что в этой области наметился идейный тупик?

- Кажется. Но как любил говорить Черчилль: «любой кризис это новые возможности». Поэтому именно сегодня я с оптимизмом смотрю на проблему моделирования поведения и интеллекта.

Несмотря на очевидный крах высоких начинаний в области ИИ?

- Мы, видимо, говорим о разных вещах. Вы, вероятно, имеете в виду классический искусственный интеллект, КИИ, или, как его называют на Западе, GOFAI - Good Old Fashioned Artificial Intelligence (старый добрый ИИ). Действительно, это направление столкнулось с серьезной критикой в 1980-90 годы и оказалось в застое. Но иначе и быть не могло. В методических предпосылках этого направления уже изначально содержались серьезные изъяны.

То есть?

- Одним из условий, приведших к неудачам в КИИ, было игнорирование важнейшего факта: интеллект впервые появился вовсе не у человека. Классический искусственный интеллект всегда понимали как задачу обратной разработки (reverse engineering): взять готовый конечный продукт, интеллект человека, реконструировать его базовые алгоритмы и создать на этой основе искусственный продукт. При этом терялись многие важные свойства, вытекающие из принципиального факта: человеческий интеллект является продуктом преемственной эволюции усложнявшегося адаптивного поведения. Интеллектом как способностью к решению проблем и адаптации в непредсказуемой среде, способностью к предвидению и выбору между разными вариантами действий, к обучению и формированию знаний обладают многие живые существа, даже с примитивной нервной системой. Поэтому фундаментальные модели интеллекта - это обязательно модели свойств, которые имеются не только у человека. Такая эволюционная ориентация позволяет, в частности, шкалировать сложные задачи: если сходу не удается создать мозг человека - попробуйте создать мозг обезьяны; если и это сложно - попробуйте дрозофилу или хотя бы воспроизведите адаптивное поведение инфузории.

Ну и в какой же точке на этой шкале мы сейчас находимся?

- Поведенческое моделирование появилось очень давно, вспомните хотя бы «черепах» Грея Уолтера (Gray Walter) в 1950-е годы. Но в 1960-е годы оно было вытеснено КИИ, где вопрос об ориентации на законы развития и эволюции поведения почти не ставился. К этой задаче вновь вернулись лишь в конце 1980-х, когда многие специалисты по ИИ вместо сверхсложных экспертных систем занялись попытками создавать пластичные, быстро работающие компьютерные модели или роботы, выживающие в той же среде, где существуют реальные животные. Эти модели, в отличие от КИИ, не имеют предварительной схемы мира, они должны строить ее под существующую среду. Такие системы адаптируются к среде с помощью набора элементарных поведенческих модулей, каждый из которых отвечает за какую-то независимую элементарную форму поведения, а затем методом проб и ошибок происходит отбор и фиксация таких модулей по результатам их действий. Планы, цели, схемы поведения не закладываются. Они эмерджентны 1, складываются «снизу вверх» из результатов адаптивного поведения. Такие системы получили название искусственных животных - «аниматов» (от англ. animal - животное и automat - автономно действующее устройство) и стали особенно известны после состоявшейся в 1990 году в Париже конференции «Симуляция адаптивного поведения: от животных к аниматам». Квинтэссенцию различий КИИ и поведенческого моделирования, на мой взгляд, остроумно отражает подмеченная еще Бертраном Расселом национальная разница в школах немецкой гештальтпсихологии и американского бихевиоризма: «Животные, которых наблюдали немцы, спокойно сидят, думают и в конце концов выдают решение из своего внутреннего сознания. А животные, которых изучали американцы, бешено прыгают с невероятным напором и темпераментом и, наконец, случайно получают желаемый результат».

Сегодня идет поиск общих принципов шкалируемой архитектуры адаптивного поведения. Это очень интересная задача. Первыми существами, чье поведение пытались моделировать, были насекомые - пауки, пчелы, осы. Например, в лаборатории ИИ в MIT (www.ai.mit.edu), руководимой Родни Бруксом (Rodney Brooks), было создано самодвижущееся шестиногое 35-сантиметровое «насекомое-робот» Genghis, которое, передвигаясь по неровному ландшафту с препятствиями, адаптивно принимало те или иные решения. В Париже есть лаборатория аниматов (AnimatLab, animatlab.lip6.fr/index_en.html), работающая с похожим насекомоподобным ходящим роботом Hexapod. В Англии, в университете Сассекса (University of Sussex), работает большой центр вычислительных нейронаук и роботики (CCNR - www.cogs.sussex.ac.uk/ccnr/index.html), создающий насекомоподобные «интеллектуальные существа».

Об адаптивных роботах пишет в этом номере Михаил Бурцев. По поводу группы из сассекского университета могу добавить: два года назад я специально ездил туда, чтобы посмотреть на эти модели, беседовал с авторами 2. При этом я невольно вспоминал модели почти сорокалетней давности из журналов вроде замечательных польских «Горизонтов техники для детей»: там школьнику предлагалось собрать «робота», который, наткнувшись на стену, разворачивался бы и ехал в другую сторону (такое же «адаптивное поведение» демонстрируют машинки в современном игрушечном магазине). Конечно, сассекские «октоподы» умеют гораздо больше. Но не настолько, насколько их встроенный процессор (а тем более - мощный процессор, на котором ведется предварительное обучение еще на виртуальной стадии) превосходит простейшие аналоговые схемы 1960-х. Начинка систем улучшилась на много порядков, а результат, по интуитивной оценке, возрос всего лишь в несколько раз. Слишком мало! Это наводит на мысль о том, что мы слишком мало знаем о принципах адаптивного поведения и законах его возникновения в ходе эволюции.

- Да, но не будем забывать, что это лишь первые шаги нового подхода. Сегодня, например, в Animat Lab разрабатывается проект Psikharpax, где в роботе синтезируются некоторые из адаптивных механизмов и нервных структур, ответственных за пространственную навигацию у крыс. Способности этой крысы-робота будут расти за счет «обучения без учителя», то есть анимат будет сам строить когнитивную карту среды и вырабатывать адаптивные стратегии поведения по механизмам, схожим с теми, что использует мозг крысы. В группе гуманоидной роботики (Humanoid Robotics Group, www.ai.mit.edu/projects/humanoid-robotics-group) из лаборатории ИИ в MIT сегодня разрабатываются обезьяноподобные и мобильные роботы (Kismet, Сосо) с гораздо более сложным, чем у первых насекомоподобных роботов, поведенческим репертуаром, куда, в частности, входят способности к социальным взаимодействиям и аффективным эмоциональным реакциям.

Кроме того, эксперименты с такими роботами могут стимулировать появление новых идей, проливающих свет на принципы адаптивного поведения. Как минимум, такие эксперименты позволяют отсекать заведомо нереалистичные теории. Если согласиться с Джоном Арчибальдом Уилером (J. A. Wheeler), который считал, что задача ученого в том, чтобы совершать ошибки как можно быстрее, то моделирование как средство элиминации ошибок - мощный инструмент в познании работы мозга. Поэтому многие нейробиологи настаивают на том, что теории работы мозга должны быть сформулированы алгоритмично, чтобы допускать моделирование. Это очень сильное условие! Один из ведущих нейробиологов-теоретиков, Нобелевский лауреат Джеральд Эделман (Gerald Edelman), стал и одним из пионеров эволюционного обучения роботов. Эделман, создавший фундаментальную теорию работы мозга и биологических основ сознания 3, в своем институте в Калифорнии (Neuroscience Institute) разрабатывает серию роботов NOMAD (Neurally Organized Mobile Adaptive Devices). Эти роботы имеют еще и родовое имя «Дарвин» (сейчас уже существует четвертое поколение этой серии). Каждый новый «Дарвин» появляется на свет практически необученным, но сталкиваясь с объектами внешнего мира и имея какое-нибудь врожденное предпочтение, начинает вырабатывать собственные абстрактные категории (научается, например, отличать друг от друга разные шары). У робота появляются знания, которые он может использовать и в других задачах. То есть начинает работать один из принципов, по которым, судя по всему, шла эволюция механизмов интеллекта.

Смущает, что об успехах в таких экспериментах пишут как о «прорывах», о «первых шагах». Однако о «вторых шагах» что-то не слышно. Может быть, поэтому меня и, думаю, многих читателей не меньше компьютерного моделирования в этой области интересует прямое изучение процессов мышления, восприятия, других высших функций мозга. Вы наблюдаете за тем, какие процессы происходят в работающем мозге, заглядываете внутрь. Что вы там видите?

- Наш мозг состоит из 1011 нейронов, образующих между собой примерно 1014 связей и имеющих гиперастрономическое число возможностей взаимодействия. Чтобы понять, как работает такой сложнейший объект, бесполезно просто заглядывать внутрь и описывать, что мы там увидим. Даже если описать работу всех до единой клеток мозга в любой момент времени, мы все равно не поймем, как возникают мышление, восприятие, психика. Следовательно, нам прежде всего требуется ясное представление о том, какой вид ответа нам нужен, что нас устроит в качестве объяснения.

Активность мозга человека, визуализируемая с помощью функционального магнитно-резонансного нейрокартирования (ФМРН) (из: John D. Van Horn and Michael S. Gazzaniga, Databasing fMRI studies - towards a 'discovery science' of brain function, Nature Reviews Neuroscience, 2002, V 3, 314-318).

Каким требованиям должно отвечать такое решение, если принять изложенную выше эволюционную перспективу взгляда на психику и интеллект? Допустим, мы хотим получить ответ на знаменитый вопрос Сеченова в «Элементах мысли»: как мозг формирует абстрактные категории? Сегодня у нас для этого есть великолепные методы функционального магнитно-резонансного нейрокартирования, и мы можем увидеть, какие области человеческого мозга вовлекаются в выработку абстрактных категорий. Но будет ли описание этих структур мозга отвечать нужным нам образом на вопрос о фундаментальных механизмах категоризации? Нет.


1 (обратно к тексту) - Популярный сейчас термин «эмерджентность» (англ. emergence) означает свойство «самопроизвольного» возникновения нового качества у системы, которая первоначально им не обладала.
2 (обратно к тексту) - «КТ» #385.
3 (обратно к тексту) - См., например, G. Edelman, Neural Darwinism. Oxford University Press, 1989; G. Edelman & G. Tononi, Consciousness. Penguin Press, 2000.

 
Страница 1
Страница 2 >>


 Адаптивное поведение копченой селедки [ "13-я КОМНАТА" ]
 Новости [ "НОВОСТИ" ]
 МикроФишки [ "НОВОСТИ" ]
 Мелькнувшая тень отечественного мобильника [ "НОВОСТИ" ]
 Свет учения [ "НОВОСТИ" ]
 To peer or not to peer? [ "НОВОСТИ" ]
 Скандинавские мотивы [ "BUSINESS@RUS" ]
 Естественный путь к искусственному интеллекту [ "ТЕМА НОМЕРА" ]
 Бег по кругу [ "КОМПЬЮFЕРРА LITE" ]
 Свобода спама или свобода от спама? [ "SOFTТЕРРА LITE" ]
 Страшилка, казачок и маленький подлян:день ненайденных решений [ "SOFTТЕРРА LITE" ]
 События [ "SOFTТЕРРА LITE" ]
 Листая старые страницы [ "КАК ЭТО СДЕЛАТЬ" ]
 По щучьему веленью, по моему хотенью… [ "РАЗБОРКИ" ]
 Ремесленник или ученый? [ "ШКОЛА" ]
 Юзер, ты тоже будешь стареньким!
Все материалы номера