Свежий номер №30 (407) / Лабиринты фотонных кристаллов
 
Дата публикации: 13.08.2001

Георгий Жувикин, George.Zhuvikin@pobox.spbu.ru

 
Страница 1
Страница 2 >>

Я был в невыгодном положении, так как не видел Поля на площадке, кроме тех моментов, когда углы между ним, солнцем и мной были в подходящем сочетании. И тогда - но только тогда - он вспыхивал.
Джек Лондон. «Тень и вспышка»

Не исключено, что последствия бума научно-исследовательских и опытно-конструкторских работ в области физики фотонных кристаллов и устройств на их основе будут сравнимы по значимости с созданием интегральной микроэлектроники в 1960-е годы: материалы нового типа позволят создавать оптические микросхемы по образу и подобию элементов полупроводниковой электроники, а принципиально новые способы передачи, хранения и обработки информации, отрабатываемые сегодня на фотонных кристаллах, в свою очередь, найдут применение в полупроводниковой электронике будущего. Неудивительно, что эта область исследований - одна из самых горячих в крупнейших мировых научных центрах, гигантах высокотехнологичного бизнеса и на предприятиях военно-промышленного комплекса.

От просветленной оптики к фотонным кристаллам

Понятие разрешенных и запрещенных энергетических зон - один из столпов твердотельной электроники (см. врезку в конце статьи). В оптике твердого тела схожее понятие появилось лишь в 1987 году, когда Эли Яблонович (Eli Yablonovitch), сотрудник Bell Communications Research (ныне профессор Калифорнийского университета в Лос-Анджелесе), ввел понятие запрещенной зоны для электромагнитных волн (electromagnetic band gap) 1. Вскоре «фотонный кристалл» (photonic crystal) и «фотонная запрещенная зона» (photonic band gap, PBG) стали ключевыми терминами новейшего направления современной оптики.

С общей точки зрения фотонный кристалл является сверхрешеткой (crystal superlattice) - средой, в которой искусственно создано дополнительное поле с периодом, на порядки превышающим период основной решетки. Для фотонов такое поле получают периодическим изменением коэффициента преломления среды - в одном, двух или трех измерениях (1D-, 2D-, 3D-фотонные структуры соответственно). Если период оптической сверхрешетки сравним с длиной электромагнитной волны, то поведение фотонов кардинально отличается от их поведения в решетке обычного кристалла, узлы которого находятся друг от друга на расстоянии, много меньшем длины волны света. Поэтому такие решетки и получили особое название - фотонные кристаллы.

Несмотря на то что идея фотонных зон и фотонных кристаллов утвердилась в оптике лишь за последние несколько лет, свойства структур со слоистым изменением коэффициента преломления давно известны физикам. Одним из первых практически важных применений таких структур стало изготовление диэлектрических покрытий с уникальными оптическими характеристиками, применяемых для создания высокоэффективных оптических спектральных фильтров и снижения нежелательного отражения от оптических элементов (такая оптика получила название просветленной) и диэлектрических зеркал с коэффициентом отражения, близким к 100%. В качестве другого хорошо известного примера 1D-фотонных структур можно упомянуть полупроводниковые лазеры с распределенной обратной связью, а также оптические Рис. 1аволноводы с периодической продольной модуляцией физических параметров (профиля или коэффициента преломления).

Наконец, обычные штриховые дифракционные решетки - это тоже пример 1D-фотонных структур: по аналогии с ними фотонные кристаллы называют иногда трехмерными дифракционными решетками. Распространение излучения в таких решетках определяется условием максимума интерференции света, рассеянного на узлах, и зависит от угла между направлением волнового вектора и осями дифракционной решетки - фотонного кристалла.

На рис. 1 схематично показано явление дифракции лучей света на периодических структурах различной размерности. При рассеянии фотонов на 1D- и 2D-структурах всегда находятся такие направления распространения дифрагировавших лучей, для которых условие максимума интерференции выполнено. Для одномерного кристалла - нити (а), такие направления образуют конические поверхности, а в двумерном случае (б) - совокупность отдельных, изолированных друг от друга лучей.

Рис. 1б

Рис. 1в

Трехмерный случай (в) принципиально отличается от одномерного и двумерного тем, что условие максимума интерференции для данной длины волны света может оказаться невыполнимым ни для одного из направлений в пространстве. Распространение фотонов с такими длинами волн в трехмерном кристалле невозможно, а соответствующие им энергии образуют запрещенные фотонные зоны.

Исторически сложилось так, что теория рассеяния фотонов на трехмерных решетках начала интенсивно развиваться с области длин волн l ~0,01-1 нм, лежащих в рентгеновском диапазоне, где узлами фотонного кристалла являются сами атомы. А вот в СВЧ-области радиодиапазона кристаллические решетки для фотонов можно в буквальном смысле слова собирать руками из объектов макроскопического размера, например - проволочек и теннисных шариков: первый фотонный кристалл был создан Яблоновичем в 1990 году именно для работы в СВЧ-диапазоне фрезеровкой куска пластмассы размером в несколько сантиметров (кстати, к тому же классу физических объектов можно отнести и фазированные антенные решетки).

Фотонные кристаллы имеют много общего с другим интересным физическим объектом - квантовыми кристаллами. Последние характеризуются тем, что амплитуда нулевых колебаний их частиц по порядку величины сравнима с периодом кристаллической решетки, и становятся существенными явления туннелирования и интерференции. Причем, если первоначально к квантовым кристаллам относили лишь структуры, построенные из частиц одного сорта, например, кристаллы изотопа гелия-3, существовавшие только при сверхнизких температурах, то в дальнейшем выяснилось, что аналогичными свойствами обладают кристаллы, содержащие растворенный водород, электроны, а также квазичастицы - экситоны, дефектоны и др. При этом по отношению к одним частицам кристалл может являться квантовым, а по отношению к другим - обычным, классическим.

Физический механизм образования фотонных запрещенных зон в кристаллах такой же, как и для электронов в диэлектриках или полупроводниках. В его основе лежит явление распространения волны в среде с периодическим полем (см. врезку), а наиболее ярко квантовые свойства фотонных кристаллов проявляются тогда, когда фотонная запрещенная зона существенно перекрывает электронную запрещенную зону. Например, время жизни возбужденного атома, помещенного в такой кристалл, может быть увеличено во много раз.

Традиционно оптические и электрические среды рассматривались независимо друг от друга. Правда, полупроводниковые оптоэлектронные приборы уже требовали к себе особого внимания из-за необходимости совмещения условий проводимости электрического тока с возможностью распространения света.

Продолжая аналогию, фотонные кристаллы можно разделить на проводники, изоляторы, полупроводники и сверхпроводники.

Фотонные проводники обладают широкими разрешенными зонами. Это прозрачные тела, в которых свет пробегает большое расстояние, практически не поглощаясь.

Другой класс фотонных кристаллов - фотонные изоляторы - обладает широкими запрещенными зонами. Такому условию удовлетворяют, например, Рис. 2широкодиапазонные многослойные диэлектрические зеркала. В отличие от обычных непрозрачных сред, в которых свет быстро затухает, превращаясь в тепло, фотонные изоляторы свет не поглощают. Что же касается фотонных полупроводников, то они обладают более узкими по сравнению с изоляторами запрещенными зонами. На рис. 2 показано соотношение разрешенных и запрещенных энергетических зон, соответствующих различным случаям: фотонного проводника (а), фотонного изолятора (б), фотонного полупроводника (в), подавителя спонтанного излучения (г) и фотонного идеального проводника (сверхпроводника) (д). Здесь Eb - ширина разрешенной фотонной зоны, Eg - ширина запрещенной фотонной зоны, Ee - ширина запрещенной электронной зоны, голубым цветом показаны фотонные зоны, красным - электронные.

Использование фотонных полупроводников удобно для организации управления световыми потоками. Это можно делать, например, влияя на положение и ширину запрещенной зоны. Поэтому фотонные кристаллы представляют огромный интерес для построения лазеров нового типа, оптических компьютеров, хранения и передачи информации.

Фотонные кристаллы предполагается использовать для создания оптических интегральных схем так же, как обычные полупроводники, металлы и диэлектрики используются для создания электронных интегральных схем.

Огромный интерес (и наибольшие трудности) представляет синтез фотонных кристаллов для работы в видимой и примыкающих к ней ближней инфракрасной и ультрафиолетовой областях спектра.

Рубин, гранат, теперь - опал

Фотонные кристаллы в природе - большая редкость. С древних времен человека, нашедшего такой кристалл, завораживала в нем особая радужная игра света. Это оптическое явление, получившее название Рис. 3а. Решетка кристалла опалаиризация (от греч. iriV  - радуга), характерно для таких минералов, как кальцит, лабрадор, опал. От игры света в последнем происходит термин опалесценция, обозначающий особый, характерный только для этого кристалла тип рассеяния излучения.

Кластерная сверхрешетка опала послужила прототипом для создания искусственных фотонных кристаллов. Например, в одной из самых первых работ по синтезу фотонных кристаллов, выполненной в Физико-техническом институте (Санкт-Петербург) и МГУ в 1996 году, была создана технология получения оптически совершенных синтетических опалов на основе сфер микроскопического размера из двуокиси кремния 2. Технология позволяла варьировать параметры синтетических опалов: диаметр сфер, пористость, показатель преломления.

Решетки, образованные плотноупакованными сферами из двуокиси кремния (рис. 3а), содержат пустоты, занимающие до 25% от общего объема кристалла, которые могут заполняться веществами другого сорта. Изменение оптических свойств опалов при наполнении пустот водой было известно уже ученым древнего мира: очень редкая разновидность опала - гидрофан (hydrophane), на старорусском - водосвет, становится прозрачной при погружении в воду.

Рис. 3б. Решетка, образованная пустотами, - реплика опала

Рис. 3в. Реплика опала, покрытая ЖК-пленкой

В современных разработках это свойство фотонного кристалла пытаются использовать для создания переключателя света - оптического транзистора.

Примером подобных работ являются исследования, проведенные в прошлом году в университете Торонто, в которых использовалась кремниевая реплика искусственного опала (если узлы обычного опала представляют собой огромные по атомным меркам шары, то узлами реплики будут того же размера шарообразные пустоты). Полученный кристалл не пропускал свет в узкой полосе длин волн от 1,38 мкм до 1,62 мкм. Дополнительные свойства ему придали, покрыв внутреннюю поверхность узлов - пустот - тонким слоем вещества с другим коэффициентом преломления (в). В Торонто для Рис. 4. Структура фотонного кристалла типа «дровяная поленница»этого использовали жидкокристаллическую композицию, что позволило управлять положением запрещенной зоны с помощью магнитного и электрического полей и таким путем - манипулировать световыми потоками в кристалле.

Исследователи из Sandia National Laboratories решили подойти к получению фотонных кристаллов с другой стороны и выбрали в качестве основного инструмента оптическую литографию. Тип создаваемых ими структур был назван дровяной поленницей (рис. 4). Несмотря на явное отличие этой технологии от применяющейся в университете Торонто, цели получения фотонных кристаллов в лабораториях Sandia те же - создание микромощных лазеров, оптических компьютеров и средств связи.

Методы оптической литографии развивают также группы исследователей из Оксфордского университета (Англия) и университета Осаки (Япония). Они применяют трехмерную голографическую литографию: в качестве рабочего материала используется полимерный фоторезист, в котором создается трехмерное изображение будущего фотонного кристалла, и в местах, подвергшихся интенсивному облучению, полимер переходит в нерастворимую форму.

Врезка 1
Врезка 2: Странности с отражением света
Врезка 3: Чужие здесь не ходят

[i40720]


1 (обратно к тексту) - E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters, Vol. 58, N. 20, p.2059-2062.
2 (обратно к тексту) - В. Н.Богомолов, Д. А.Курдюков, А. В.Прокофьев, С. М.Самойлович. Эффект фотонной запрещенной зоны в оптическом диапазоне твердотельных SiO2 кластерных решетках - опалах. Письма в ЖЭТФ, том 63, вып. 7, стр. 496-501.

 
Страница 1
Страница 2 >>


Георгий Жувикин
George.Zhuvikin@pobox.spbu.ru
 


<< Фотонная схемотехника
Все материалы номера
Алле-c - оп! >>